MATH2050C Selected Solution to Assignment 5

Section 3.4

(4a). The subsequence $b_{n}=a_{2 n}=1 /(2 n) \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, the subsequence $c_{n}=a_{2 n+1}=2+1 /(2 n+1) \rightarrow 2$ as $n \rightarrow \infty$. Since these two subsequences converge to different limits, $\left\{a_{n}\right\}$ is divergent.
(b). The subsequence $b_{k}=a_{8 k}=\sin 8 k \pi / 4=0$ while the subsequence $c_{k}=a_{8 k+2}=\sin (8 k+$ 2) $\pi / 4=1$. Thus the first subsequence tends to 0 and the second one to 1 . We conclude that this sequence is divergent.
(7a). Observe $a_{n}=\left(1+1 / n^{2}\right)^{n^{2}}$ is a subsequence of $c_{n}=(1+1 / n)^{n}$. In fact, $a_{n}=c_{n^{2}}$. Since every subsequence converges to the same limit for a convergent sequence, we have $\lim _{n \rightarrow \infty} a_{n}=$ $\lim _{n \rightarrow \infty} c_{n}=e$.
(d). In a previous exercise we have shown that $a_{n}=(1+2 / n)^{n}$ is convergent (actually when 2 is replaced by any positive a). Denote its limit by a. Then the subsequence $b_{k}=a_{2 k}=(1+1 / k)^{2 k}$ should tend to the same a. But now it is clear that it converges to e^{2}, so $a=e^{2}$. Therefore, $\lim _{n \rightarrow \infty} a_{n}=e^{2}$.
(9). If $\left\{x_{n}\right\}$ does not converge to 0 , for some $\varepsilon_{0}>0$, there are $n_{j} \rightarrow \infty$ such that $\left|x_{n_{j}}-0\right| \geq \varepsilon_{0}$. Thus $\left\{x_{n_{j}}\right\}$ cannot converge to 0 .
(11). Let $a_{n}=(-1)^{n} x_{n}$. By assumption it tends to some a. The subsequence $b_{k}=a_{2 k}=x_{2 k}$ tends to a, showing that $a \geq 0$. On the other hand, $c_{k}=a_{2 k+1}=-x_{2 k+1}$ also tends to a, showing that $a \leq 0$. (Recall it is assumed that all $x_{n} \geq 0$.) We conclude that $a=0$. For every $\varepsilon>0$, there is some n_{ε} such that $\left|x_{n}-0\right|=\left|(-1)^{n} x_{n}-0\right|<\varepsilon$ for all $n \geq n_{\varepsilon}$, hence $\left\{x_{n}\right\}$ converges to 0 .

Supplementary Exercises

1. Can you find a sequence from $[0,1]$ with the following property: For each $x \in[0,1]$, there is subsequence of this sequence taking x as its limit? Suggestion: Consider the rational numbers.
Solution Let $\left\{r_{n}\right\}$ be an enumeration of the set of all rational numbers in $[0,1]$. This is possible as all rational numbers form a countable set. Let $x \in[0,1]$. We claim that it is a limit point. For each $n \geq 1$, there are infinitely many rational numbers in $(x-1 / n, x+$ $1 / n) \cap[0,1]$. We can pick one by one from $\left\{r_{n}\right\}$ to form $\left\{r_{n_{k}}\right\}$ so that $n_{k}<n_{k+1}$, that is, $\left\{r_{n_{k}}\right\}$ is a subsequence. Now, given $\varepsilon>0$, pick some n_{1} such that $1 / n_{1}<\varepsilon$. It then follows that for all $n_{k} \geq n_{1},\left|r_{n_{k}}-x\right|<1 / n_{k} \leq 1 / n_{1}<\varepsilon$. We conclude $r_{n_{k}} \rightarrow x$.
Note. This exercise shows that the set of limit points of a single sequence could be very large.
2. Recall that for $a \geq 0, E(a)=\lim _{n \rightarrow \infty}(1+a / n)^{n}$ is well-defined. Show that for a rational $a>0, E(a)=e^{a}$.

Solution Let $a=p / q$. We have

$$
\left(1+\frac{p / q}{k p}\right)^{k p}=\left(\left(1+\frac{1}{q k}\right)^{q k}\right)^{p / q} .
$$

Since $x_{n}=(1+1 / n)^{n}$ converges to e, so does the subsequence $y_{k}=x_{q k}$. Letting $k \rightarrow \infty$ and using the result proved in Supp. Problem 3 in Ex 3: $x_{n} \rightarrow x$ implies $x_{n}^{p / q} \rightarrow x^{p / q}$,

$$
\begin{aligned}
E(p / q) & =\lim _{k \rightarrow \infty}\left(1+\frac{p / q}{k p}\right)^{k p} \\
& =\lim _{k \rightarrow \infty}\left(\left(1+\frac{1}{q k}\right)^{q k}\right)^{p / q} \\
& =\left(\lim _{k \rightarrow \infty}\left(1+\frac{1}{q k}\right)^{q k}\right)^{p / q} \\
& =e^{p / q} .
\end{aligned}
$$

Note After a meaning is assigned to e^{a} for irrational a 's, one has $E(a)=e^{a}$ for all $a \in \mathbb{R}$. We will do this later.
3. Let $\left\{x_{n}\right\}$ be a positive sequence such that $a=\lim _{n \rightarrow \infty} x_{n+1} / x_{n}$ exists. Show that $\lim _{n \rightarrow \infty} x_{n}^{1 / n}$ exists and is equal to a.
Solution Write

$$
x_{n}=\frac{x_{n}}{x_{n-1}} \frac{x_{n-1}}{x_{n-2}} \cdots \frac{x_{2}}{x_{1}} x_{1} .
$$

For small $\varepsilon>0$, let n_{0} be $a-\varepsilon<x_{n} / x_{n-1}<a+\varepsilon$ for all $n \geq n_{0}$. Then

$$
x_{n} \leq(a+\varepsilon)(a+\varepsilon) \cdots \frac{x_{n_{0}-1}}{x_{n_{0}-2}} \cdots \frac{x_{2}}{x_{1}} x_{1} \leq(a+\varepsilon)^{n-n_{0}+1} K,
$$

where K depends on n_{0}. It follows that

$$
x_{n}^{1 / n} \leq(a+\varepsilon)^{\left(n-n_{0}+1\right) / n} K \leq(a+\varepsilon)(a+\varepsilon)^{\left(-n_{0}+1\right) / n} K^{1 / n} .
$$

We have a similar inequality from the other side:

$$
(a-\varepsilon)(a-\varepsilon)^{\left(-n_{0}+1\right) / n} K^{1 / n} \leq x_{n}^{1 / n} .
$$

It shows that $x_{n}^{1 / n}$ is bounded. To show its limit exists, by Theorem 3.4.9 in Text or Theorem 5.2 in Ex 5, it suffices to show its convergent subsequences converge to the same limit. Let $x_{n_{j}}$ be a convergent subsequence which converges to some $b \neq a$. Let $\varepsilon=|b-a| / 2$. There is some j_{0} such that $\left|x_{n_{j}}^{1 / n_{j}}-b\right|<|b-a| / 2$ for all $j \geq j_{0}$. Passing to infinity in the above inequalities for $x_{n_{j}}$, we get $(a-\varepsilon) \leq b \leq(a+\varepsilon)$, that is, $|b-a| \leq$ $|b-a| / 2$, contradiction holds.
Remark The above proof aims to illustrate the use of Theorem 3.4.9. A student suggests to me the following direct proof. Looking at the inequality,

$$
(a-\varepsilon)(a-\varepsilon)^{\left(-n_{0}+1\right) / n} K^{1 / n} \leq x_{n}^{1 / n} \leq(a+\varepsilon)(a+\varepsilon)^{\left(-n_{0}+1\right) / n} K^{1 / n},
$$

and noting $a^{1 / n} \rightarrow 1$, for the same ε, one can find another $n_{1}, n_{1} \geq n_{0}$, such that

$$
(a \pm \varepsilon)^{\left(-n_{0}+1\right) / n} K^{1 / n}<1+\varepsilon
$$

for all $n \geq n_{1}$. It follows that

$$
(1+\varepsilon)(a-\varepsilon)<x_{n}^{1 / n} \leq(1+\varepsilon)(a+\varepsilon)
$$

which implies

$$
-C \varepsilon \leq x_{n}^{1 / n}-a \leq C \varepsilon, \quad n \geq n_{1}
$$

for some constant C.
4. Show that $\lim _{n \rightarrow \infty} \frac{n}{(n!)^{1 / n}}=e$.

Solution Let $x_{n}=n^{n} / n$! so that $\frac{n}{(n!)^{1 / n}}=x_{n}^{1 / n}$. Now, $x_{n+1} / x_{n}=(1+1 / n)^{n} \rightarrow e$ and the desired conclusion follows from the result in Problem 3.
Remark A formula that relates n ! to n^{n} is given by the Stirling's formula: $n!\sim \sqrt{2 \pi n}(n / e)^{n}$.
5. The concept of a sequence extends naturally to points in \mathbb{R}^{N}. Taking $N=2$ as a typical case, a sequence of ordered pairs, $\left\{\mathbf{a}_{n}\right\}, \mathbf{a}_{n}=\left(x_{n}, y_{n}\right)$, is said to be convergent to a if, for each $\varepsilon>0$, there is some n_{0} such that

$$
\left|\mathbf{a}_{n}-\mathbf{a}\right|<\varepsilon, \quad \forall n \geq n_{0}
$$

Here $|\mathbf{a}|=\sqrt{x^{2}+y^{2}}$ for $\mathbf{a}=(x, y)$. Show that $\lim _{n \rightarrow \infty} \mathbf{a}_{n}=\mathbf{a}$ if and only if $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$.
Solution It follows from the elementary inequalities

$$
\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right| \leq|\mathbf{a}-\mathbf{b}| \leq\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

which show that $\mathbf{a}_{n} \rightarrow \mathbf{a}$ if and only if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$.
6. Bolzano-Weierstrass Theorem in \mathbb{R}^{N} reads as, every bounded sequence in \mathbb{R}^{N} has a convergent subsequence. Prove it. A sequence is bounded if $\left|\mathbf{a}_{n}\right| \leq M, \forall n$, for some number M.
Solution Take $N=2$ for simplicity. $\left\{\mathbf{a}_{n}\right\}$ is bounded implies $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded by the previous exercise. Pick a convergent subsequence $\left\{x_{n_{k}}\right\}$ from $\left\{x_{n}\right\}$. As $\left\{y_{n_{k}}\right\}$ is a bounded sequence, pick a convergent sequence $\left\{y_{n_{k_{j}}}\right\}$ from $\left\{y_{n_{k}}\right\}$. Then $\left(x_{n_{k_{j}}}, y_{n_{k_{j}}}\right)$ is a convergent subsequence for $\mathbf{a}_{n}=\left(x_{n}, y_{n}\right)$.

